

Company names and product names appearing in the test questions are trademarks or registered

trademarks of their respective companies. Note that the ® and ™ symbols are not used within the text.

April 2019

Fundamental IT Engineer Examination (Afternoon)

Questions must be answered in accordance with the following:

Question Nos. Q1 – Q6 Q7 , Q8

Question Selection Compulsory Select 1 of 2

Examination Time 13:30 - 16:00 (150 minutes)

Instructions:

1. Use a pencil. If you need to change an answer, erase your previous answer completely

and neatly. Wipe away any eraser debris.

2. Mark your examinee information and test answers in accordance with the instructions

below. Your answer will not be graded if you do not mark properly. Do not mark or

write on the answer sheet outside of the prescribed places.

(1) Examinee Number

Write your examinee number in the space provided, and mark the appropriate space

below each digit.

(2) Date of Birth

Write your date of birth (in numbers) exactly as it is printed on your examination

admission card, and mark the appropriate space below each digit.

(3) Question Selection

For Q7 and Q8, mark the of the question you select to answer in the “Selection

Column” on your answer sheet.

(4) Answers

Mark your answers as shown in the following sample question.

[Sample Question]

In which month is the spring Fundamental IT Engineer Examination conducted?

Answer group

a) March b) April c) May d) June

Since the correct answer is “ b) April ”, mark your answer sheet as follows:

[Sample Answer]

Sample b

_ _

Do not open the exam booklet until instructed to do so.

Inquiries about the exam questions will not be answered.

- 2 -

Notations used in the pseudo-language

In questions that use pseudo-language, the following notations are used unless otherwise

stated:

[Declaration, comment, and process]

Notation Description

type: var1, , array1[],  Declares variables var1,  , and/or arrays

array1[],  , by data type such as INT and CHAR.

FUNCTION: function(type: arg1, ) Declares a function and its arguments arg1,  .

/* comment */ Describes a comment.

P
ro

c
e
s
s

variable  expression ; Assigns the value of the expression to the variable.

function (arg1, ) ; Calls the function by passing / receiving the

arguments arg1,  .

IF (condition) {

 process1

}

ELSE {

 process2

}

Indicates the selection process.

If the condition is true, then process1 is executed.

If the condition is false, then process2 is

executed, when the optional ELSE clause is present.

WHILE (condition) {

 process

}

Indicates the “WHILE” iteration process.

While the condition is true, the process is

executed repeatedly.

DO {

 process

} WHILE (condition);

Indicates the “DO - WHILE” iteration process.

The process is executed once, and then while the

condition is true, the process is executed

repeatedly.

FOR (init ; condition ; incr) {

 process

}

Indicates the “FOR” iteration process.

While the condition is true, the process is

executed repeatedly.

At the start of the first iteration, the process init is

executed before testing the condition.

At the end of each iteration, the process incr is

executed before testing the condition.

[Logical constants]

true, false

[Operators and their precedence]

Type of operation Unary Arithmetic Relational Logical

Operators +, −, not ×, , % +, − >, <, ≥, ≤, =,  and or

Precedence High Low

Note: With division of integers, an integer quotient is returned as a result.

 The “%” operator indicates a remainder operation.

- 3 -

 Questions Q1 through Q6 are all compulsory. Answer every question.

Q1. Read the following description of a hybrid encryption schema, and then answer

Subquestion.

In a public-key cryptosystem, hybrid encryption uses both public-key and symmetric-key

encryption. In hybrid encryption schema, public-key encryption is used for key

encapsulation and symmetric-key encryption for data encapsulation. The key used for data

encapsulation and encapsulated by public-key encryption is called the session key.

A hybrid encryption schema is shown below.

[Sender’s processes]

(1) Generate session key sk for encryption. Session key sk can be generated randomly.

(2) Encrypt plain message m using session key sk and symmetric-key encryption function

SENC.

(3) Encrypt session key sk using public-key encryption function PENC.

(4) Transmit encrypted message c1 and encrypted session key c2 to the receiver.

[Receiver’s processes]

(1) Receive encrypted message c1 and encrypted session key c2.

(2) Decrypt the received encrypted session key c2.

(3) Decrypt the received encrypted message c1. The resulting decrypted message is plain

message m.

- 4 -

Figure 1 shows the hybrid encryption schema, where a rectangle indicates a function and a

parallelogram indicates a variable.

Figure 1 Hybrid encryption schema

The following notations are used in Figure 1.

Notation Description

Functions

PENC Public-key encryption function.

PDEC Public-key decryption function (inverse of PENC).

SENC Symmetric-key encryption function.

SDEC Symmetric-key decryption function (inverse of SENC).

Variables

m Plain message

c1, c2 Encrypted messages

ssk Sender’s private key

spk Sender’s public key

rsk Receiver’s private key

rpk Receiver’s public key

sk Session key

m sk

c1 (m,sk)A c2  (sk,)B

C

C

c1, c2

Sender

m  SDEC(c1,)E

  (c2,)FD D

c1, c2

Receiver

E

Insecured network

- 5 -

Subquestion

From the answer groups below, select the correct answers to be inserted in each blank

_______ in the above figure.

Answer group for A, B and F

a) PDEC

b) PENC

c) SDEC

d) SENC

Answer group for C, D and E

a) rpk

b) rsk

c) sk

d) spk

e) ssk

- 6 -

Q2. Read the following description of virtual memory and paging, and then answer

Subquestions 1 and 2.

Virtual memory is a technique that allows processes to use more memory than the system

is physically equipped for. In this technique, each process has its own virtual memory

consisting of fixed-sized fragments called pages, while the physical memory is managed

by fragments of equal size called page frames. Some pages that are being used or were

recently used are placed into page frames in the physical memory, and the other pages are

placed in auxiliary storage such as a hard disk. Mappings between pages and page frames

are managed by the operating system. When a process demands a page that is not in

physical memory, a page fault occurs and the operating system loads the demanded page

from the auxiliary storage to a page frame. This strategy of memory management is

known as demand paging.

Figure 1 shows the concept of demand paging.

Figure 1 Concept of demand paging

P
ro

ce
ss

 1

P
ro

ce
ss

 2

Physical memory

1 4 7 8 9

Auxiliary Storage

 2 3 5 6 10

Virtual memory

1 2 3 4 5

Operating System Virtual memory

6 7 8 9 10

demand

Execution of processes Physical system

load

evict

...

- 7 -

When a page is not in physical memory, it takes additional time to load the page from

auxiliary storage. Therefore, the frequent occurrence of page faults can severely degrade

performance.

The expected data access time T to access a data in a page can be formulated as follows:

T = ((1 - Rf) × Tm) + (Rf × Ta)

where:

Rf : page fault rate

Tm : data access time when the page is in physical memory

Ta : data access time when the page is in auxiliary storage

Consider a system where Tm is 200 nanoseconds, and Ta is 4 milliseconds. Table 1 shows

examples of page fault rates and their expected data access times. Assuming that there are

enough empty page frames in the physical memory.

Table 1 Examples of page fault rates and their expected data access times

Page fault rate Expected data access time (*)

1% 40.2 microseconds

0.1% ___A___ microseconds

0.01% ___B___ nanoseconds

Note: (*) Rounded to 3 significant figures.

Subquestion 1

From the answer group below, select the correct answer to be inserted in each blank

_______ in Table 1.

Answer group

a) 4.02 b) 4.20 c) 6.00

d) 40.2 e) 42.0 f) 60.0

g) 402 h) 420 i) 600

- 8 -

Subquestion 2

From the answer groups below, select the correct answer to be inserted in each blank

_______ in the following description.

[Page replacement]

When a page fault occurs and no empty page frame is available, the operating system

evicts the content of a page frame to the auxiliary storage to make room for the demanded

page. The page frame that is evicted is called the victim.

Several algorithms can be used to determine the page frame to be chosen as victim. Two

algorithms are considered here: first-in, first-out (FIFO), and the least recently used (LRU)

algorithm.

In the FIFO algorithm, the page frame that has held the same page for the longest period is

chosen as victim. In the LRU algorithm, the page frame that has held a page unused for

the longest period is chosen as victim.

Figure 2 illustrates an example of system behavior for each of the above two algorithms.

In this system, there are 3 page frames X, Y and Z in the physical memory, and the process

running on the system demands 5 pages (pages 1 through 5) in order 1 2 3 4 1 2 5 1 2

3 4 5. The pages loaded with page faults are underlined.

FIFO algorithm

Demand for the pages 1 2 3 4 1 2 5 1 2 3 4 5

P
ag

e

fr
am

es
 X 1 1 1 4 4 4 5 5 5 5 5 5

Y 2 2 2 1 1 1 1 1 3 3 3

Z 3 3 3 2 2 2 2 2 4 4

LRU algorithm

Demand for the pages 1 2 3 4 1 2 5 1 2 3 4▼ 5

P
ag

e

fr
am

es
 X 1 1 1 4 4 4 5 5

Y 2 2 2 1 1 1 1

Z 3 3 3 2 2 2

Note: The shaded parts are intentionally left blank.

Figure 2 Example of system behavior for each algorithm

In the FIFO algorithm, 9 page faults occur in Figure 2. In the LRU algorithm, at the

second demand for page 4 (marked by “▼”), the page in page frame ___C___ is replaced.

In total, when using the LRU algorithm, ___D___ page faults occur in Figure 2.

- 9 -

Figure 3 illustrates another example of system behavior for each of the two algorithms.

Figure 3 is identical to Figure 2 except for an additional page frame W.

FIFO algorithm

Demand for the pages 1 2 3 4 1 2 5 1 2 3 4 5

P
ag

e

fr
am

es

W 1 1 1 1 1 1 5 5

X 2 2 2 2 2 2 1

Y 3 3 3 3 3 3

Z 4 4 4 4 4

LRU algorithm

Demand for the pages 1 2 3 4 1 2 5 1 2 3 4 5

P
ag

e

fr
am

es

W 1 1 1 1 1 1 1 1 1 1 1 5

X 2 2 2 2 2 2 2 2 2 2 2

Y 3 3 3 3 5 5 5 5 4 4

Z 4 4 4 4 4 4 3 3 3

Figure 2 Another example of system behavior for each algorithm

In Figure 3, ___E___ page faults occur in the FIFO algorithm, and 8 page faults occur in

the LRU algorithm.

Answer group for C

a) X b) Y c) Z

Answer group for D and E

a) 5 b) 6 c) 7

d) 8 e) 9 f) 10

- 10 -

Q3. Read the following description of a database for managing the courses and grades of

university students, and then answer Subquestions 1 through 3.

A university maintains a database in order to keep track of information on student profiles,

courses and sections offered, and grades obtained.

The database is composed of four tables. The structure of the table and sample data for

each table are shown below. The primary keys are underlined.

(1) Student Table

StudentNo Name Department Class Program

1599221 Steve Kam CS Sophomore BSC

1599222 Mathew Ken CS Sophomore BSC

1599223 Allen Strew CS Sophomore BSC

1599224 Stephen Ford CS Sophomore BSC

(2) Course Table

CourseNo CourseName CreditHours Department

CS173 Discrete Mathematics 3 CS

CS225 DataStructures 3 CS

CS311 Database Systems 3 CS

CS377 Algorithms 3 CS

(3) Section Table

SectionNo CourseNo Instructor Semester Year

1112 CS 311 John Summer 2018

1113 CS 173 Clark Fall 2018

1114 CS 377 Abraham Fall 2018

1115 CS 225 Clark Spring 2019

1116 CS 311 John Summer 2019

(4) GradeReport Table

StudentNo SectionNo Grade

1599221 1112 B

1599221 1113 C

1599222 1113 B

1599222 1115 A

1599223 1116 (null)

1599224 1112 A

1599224 1114 A

- 11 -

A course has one or more sections. SectionNo uniquely identities each section.

Grade shows the result the student obtained in the given section. It is a one-character code,

such as A(excellent), B(good), C(fair), …, or “null” if the section is not completed.

All students register at least one section, that is, every StudentNo in Student table appears

in GradeReport table.

Subquestion 1

From the answer groups below, select the correct answer to be inserted in each blank

_______ in the following SQL statement.

The SQL statement SQL1 outputs the student number, name, and department of students

who got As in all courses they completed.

-- SQL1 --

SELECT StudentNo, Name, Department

FROM Student S

WHERE ____A____

 (SELECT StudentNo

 FROM GradeReport

 WHERE StudentNo = S.StudentNo AND ____B____)

From the sample data of each table shown in the description, SQL1 outputs the following

result:

StudentNo Name Department

1599224 Stephen Ford CS

Answer group for A

a) EXISTS b) IN

c) NOT EXISTS d) NOT IN

Answer group for B

a) Grade != 'A' b) Grade < 'A' c) Grade = 'A'

- 12 -

Subquestion 2

From the answer group below, select the correct answer to be inserted in each blank

_______ in Figure 1.

In SQL, UNION, INTERSECT and EXCEPT are binary operations on relations.

Assuming that there are two relations R and S,

(1) R UNION S results in a relation that contains the tuple/records that are either in R, or

in S, or in both.

(2) R INTERSECT S results in a relation that contains the tuple/records that are in both R

and S.

(3) R EXCEPT S results in a relation that contains the tuple/records that are in R but not in

S.

Figure 1 shows an example of the binary operations

 R S R UNION S R INTERSECT S R EXCEPT S

ID __ ID ______ ID ____ ID ____ ID

111 111 111

222 222 222 C D

333 444 333

555 666 444

 555

 666

Figure 1 Example of binary operations

Answer group for C and D

a) 111 b) 333 c) 333 d) 444

 222 444 555 666

 555

 666

- 13 -

Subquestion 3

From the answer groups below, select the correct answer to be inserted in each blank

_______ in the following SQL statement.

The SQL statement SQL2 outputs students who completed all courses taught by the

instructor named Clark in 2018 and 2019.

-- SQL2 --

SELECT StudentNo, Name, Department

FROM Student S

WHERE ____E____ (

 (SELECT SectionNo

 FROM Section

 WHERE Instructor = 'Clark'

 AND (Year = 2018 OR Year = 2019))

 ____F____

 (SELECT SectionNo

 FROM GradeReport G

 WHERE G.StudentNo = S.StudentNo))

From the sample data of each table shown in the description, SQL2 outputs the following

result:

StudentNo Name Department

1599222 Mathew Ken CS

Answer group for E

a) EXISTS b) IN

c) NOT EXISTS d) NOT IN

Answer group for F

a) EXCEPT b) INTERSECT c) UNION

- 14 -

a3 a2 a1 a0

a3 a2 a1 a0

Generator

r2 r1 r0 b3 b2 b1 b0 q2 q1 q0

Checker

Correction logic

s2 s1 s0

a3 a2 a1 a0

Syndrome

Data-bits

Code-bitsCode-bits

Data-bits
Encoder

Transmission

medium

Decoder

Sender Receiver

Q4. Read the following description of Hamming code, and then answer Subquestions 1 and

2.

Hamming code is extra information to be added to data to detect/correct errors, if any,

during transmission.

For example, Hamming code C(7, 4) implies that while transmitting 4 data-bits, the sender

computes three additional parity bits, assembles them with the data to convert it to 7 code-

bits and transmits these code-bits to the receiver. The receiver computes the three parity

bits from the received 7 code-bits and checks for errors. If no error has occurred in

transmission, the receiver correctly receives 4 data-bits from the code-bits. If even a single

bit has been changed in transmission, the value of the three parity bits will indicate the

position of the error, which can then be corrected.

Figure 1 The structure of encoder and decoder for Hamming code

Figure 1 shows the structure of the encoder at a sender site and the decoder at a receiver

site for Hamming code C(7, 4). At the sender site, three parity bits r2, r1, and r0 are

generated from 4 data-bits a3, a2, a1, and a0, and appended to the data-bits before

transmission. The parity bits r2, r1 and r0 are generated by using the equations below:

r2 = a3  a1  a0

r1 = a3  a2  a1

r0 = a2  a1  a0

where symbol “” designates the XOR (exclusive-OR) operation.

- 15 -

At the receiver site, upon receiving 7 code-bits b3, b2, b1, b0, q2, q1 and q0, the checker

generates 3 syndrome-bits s2, s1 and s0 by using the equations given below. The syndrome-

bits identify the syndrome and the location of a single bit error.

s2 = b3  b1  b0  q2

s1 = b3  b2  b1  q1

s0 = b2  b1  b0  q0

The pattern of the 3 syndrome-bits identifies an error, if any, in the received code-bits as

well as the location of the error.

Table 1 shows the correspondence of the values of syndrome-bits with the location of the

error. For example, if q0 is in error, s0 is the only bit affected and the syndrome-bits are

001.

Table 1 Correspondence of syndrome-bits with error location

Syndrome-bits (s2, s1 , s0) Error location

000 No error

001 q0

… …

111 b1

Subquestion 1

From the answer groups below, select the correct answer to be inserted in each blank

_______ in the following description.

The data-bits 1001 become the code-bits ___A___ . When the receiver receives the code-

bits, the checker generates the syndrome-bits ___B___ , and identifies the data-bits as

1001.

The data-bits 0110 become the code-bits 0110100. However, if the receiver receives the

code-bits 1110100 because of a transmission error, the checker generates syndrome-bits

___C___ .

- 16 -

Answer group for A

a) 1001000 b) 1001011

c) 1001100 d) 1001110

Answer group for B and C

a) 000 b) 010 c) 011

d) 100 e) 110 f) 111

Subquestion 2

From the answer groups below, select the correct answer to be inserted in each blank

_______ in the following description.

When the checker at the receiver generates syndrome-bits 110, the checker realizes that

there is an error in ___D___ bit.

Hamming code C(7, 4) cannot correct two-bit errors. Assuming that a sender generates

code-bits 1101000 from data-bits 1101, and sends them to a receiver. However, a two-bit

error has incurred on the code-bits during the transmission, and the receiver receives code-

bits 0001000. Then the checker generates syndrome-bits 101, and realizes that there is an

error in bit ___E___ . Finally, the receiver receives incorrect data-bits ___F___ after

error correction.

Answer group for D and E

a) b0 b) b1

c) b2 d) b3

Answer group for F

a) 0000 b) 0011 c) 0101

d) 1001 e) 1101 f) 1110

- 17 -

Q5. Read the following description of the software design of a stock trading application, and

then answer Subquestions 1 and 2.

Stock trading consists of traders selling and buying stock items throughout the day. Each

trader has several stock items in different quantities and cash for buying. The system

allows short selling, where a trader has a negative cash amount or negative stock quantity

during the day but it should be positive by the end of the day. This happens when traders

borrow stocks to sell or cash from other traders during the day and return it at day’s end.

A program is written to update the trader record (Figure 1) and report all negative stock

quantities or negative cash amounts (Figure 2) at the end of the day.

(done at close of trading)

(done at close of trading)

Figure 1 Update trader record Figure 2 Report all negative trades

[Program Description for UpdateTrader]

Once trading is closed, the program updates TraderMaster file using Transaction file.

(1) The sequential file Transaction contains a chronological record of each trade (stock

items bought or sold) for the given day.

File: Transaction (TDate, TTime, TID, TItemID, TQty, TPrice, TBuyID, TSellID)

Field Description Field Description

TDate Date of transaction TQty Quantity bought/sold

TTime Time of transaction TPrice Unit price of stock item

TID Unique transaction ID TBuyID Trader ID of buyer

TItemID ID of stock item traded TSellID Trader ID of seller

Trader

Master

Program

Negative

Negative Trades

Trans-

action

Trader

Master

Program

UpdateTrader

- 18 -

(2) The indexed file TraderMaster (buyer and seller) contains stocks held by traders. The

file is indexed by MID and MItemID. Each record contains each stock item a trader

has (or owns). Cash is considered an item. The file is updated after trading close.

File: TraderMaster (MID, MItemID, MQty, MPrice)

Field Description

MID Unique ID of trader

MItemID Unique ID of stock item

When item is cash, value is “000”

MQty Quantity of stock item held by the trader

When item is cash, value is 1

MPrice Unit price of stock item (the latest price)

When item is cash, value shows the balance

[Program Description for Negative]

(1) The program prints all Traders with a negative cash position or negative stock quantity

at close of trading. This program is executed after UpdateTrader.

In the programs UpdateTrader and Negative, the following statements are used:

 Open filename [indexed by (index1, index2, …)]

Open filename opens filename for sequential reading. Open filename indexed by

(index1, index2, …) opens filename for indexed reading with the field list as index.

 Read filename into (field1, field2, …)

Read one record from filename. The fields of the record are stored in the variables

field1, field2, … . When the end of the file is reached, the statement returns true.

 Read filename (index1, index2, …) into (field1, field2, …)

The file filename is searched for in the records with index equal to index1, index2,

… . The fields of the record are stored in variables field1, field2, … . The statement

returns true when the specified record exists.

 Write filename from (value1, value2, …)

Write one record into filename. The fields of the record are constructed from the

values value1, value2, … .

 Update filename from (value1, value2, …)

Update the given record into filename. The fields of the record are constructed from

values value1, value2, … .

 Close filename

Close filename.

- 19 -

[Program UpdateTrader]

Start UpdateTrader

 Open Transaction,
 Open TraderMaster indexed by (MID, MItemID)

T_EOF  Read Transaction into (TDate, TTime, TID,

 TItemID, TQty, TPrice, TBuyID, TSellID)

M_exist  Read TraderMaster(TSellID, TItemID) into (MID, MItemID, MQty, MPrice)

StkQty  0 – TQty StkQty  MQty – TQty

Write TraderMaster from (TSellID,
TItemID, StkQty, TPrice)

Update TraderMaster from (TSellID,
TItemID, StkQty, TPrice)

(1)

M_exist  Read TraderMaster(TSellID, "000") into (MID, MItemID, MQty, MPrice)

Write TraderMaster from
(TSellID, "000", 1,)A

Update TraderMaster from
(TSellID, "000", 1,)B

M_exist  Read TraderMaster(TBuyID, TItemID) into (MID, MItemid, MQty, MPrice)

Write TraderMaster from
(TBuyID, TItemID, TQty, TPrice)

Update TraderMaster from (TBuyID,
TItemID, TQty - MQty, TPrice)

M_exist  Read TraderMaster(TBuyID, "000") into (MID, MItemID, MQty, MPrice)

Write TraderMaster from
(TBuyID, "000", 1, 0 - TPrice)

Update TraderMaster from
(TBuyID, "000", 1, MPrice – Tprice)

T_EOF  Read Transaction into (TDate, TTime, TID,

 TItemID, TQty, TPrice, TBuyID, TSellID)

Loop
while not T_EOF

M_exist
 truefalse 

(2)

M_exist
 truefalse 

(3)

M_exist
 truefalse 

(4)

M_exist
(5)

(6)

Loop

 Close TraderMaster,
 Close Transaction

End UpdateTrader

 truefalse 

- 20 -

[Program Negative]

Start Negative

EOF  Read TraderMaster into (MID, MItemID, MQty, MPrice)

Print ("Negative Cash position: ”,
MID, MPrice)

Print (“Unclosed short selling: ”,
MID, MItemID, MQty, MPrice)

EOF  Read TraderMaster into (MID, MItemID, MQty, MPrice)

C

Close TraderMaster

End Negative

true

false

MQty < 0D

Open TraderMaster

Loop
while not EOF

Loop

true

falsefalse

true

Subquestion 1

From the answer groups below, select the correct answer to be inserted in each blank

_______ in the program.

Answer group for A and B

a) - MPrice b) - TPrice

c) MPrice d) TPrice

e) MPrice + TPrice f) MPrice - TPrice

Answer group for C and D

a) MItemID = "000" b) MPrice < 0

c) MPrice ≥ 0 d) MQty < 0

e) MQty ≥ 0

- 21 -

Subquestion 2

From the answer group below, select the correct answer to be inserted in the blank

_______ in the following description.

To monitor short selling, a sequential file ShortSell is used in the program UpdateTrader.

The file ShortSell contains all transactions that were sold short or in negative quantity. The

fields of the file ShortSell are identical to those of the file Transaction, except TQty

contains a negative value for quantity in the former file.

To monitor short selling, the following process should be inserted immediately before the

statement pointed to by ___E___ . Here, the file ShortSell is opened and closed properly

in the program.

 false

 StkQty < 0

 true

Write ShortSell from (TDate, TTime, TID,

TItemID,StkQty, TPrice, TBuyID, TSellID)

Answer group for E

a) (1) b) (2) c) (3)

d) (4) e) (5) f) (6)

- 22 -

Q6. Read the following description of a program to solve the subarray sum problem, and

then answer Subquestions 1 through 3.

(See the top of this booklet for the notations used in the pseudo-language.)

Given an array of positive integers and a target sum, the problem is to find all subarrays

whose sum is equal to the target sum. A subarray is a part of the given array composed of

contiguous elements. For example, when the target sum is 14, the shaded subarray in

Figure 1 satisfies the given condition. The 2-point method is a more efficient way to solve

this problem than the naïve method.

6 3 2 5 1 1 7 3

Figure 1 Example of an array

[Program Description]

(1) The subprogram SSumNaive checks whether all possible sums of subarrays are equal

to the target sum. If subarrays that satisfy this condition are found, it prints their

starting and ending indices. Otherwise, it prints the message “No subarray found”.

(2) The subprogram SSum2point uses two pointers: starting and ending indices that

represent a subarray. In the initialization step, the starting and ending indices start

from 1, and the current sum is the first element of the array.

(i) If the current sum of the subarray is greater than the target sum and the starting

index is smaller than the ending index, removes starting elements from the current

sum and moves the starting index rightward until it becomes less than or equal to

the target sum.

(ii) If the current sum is equal to the target sum, it outputs the two pointers.

(iii) The next element of the current subarray is added to the current sum, and the

ending index moves rightward by 1. The subprogram stops after the ending index

exceeds the last index of the array. Otherwise, it goes to step (i).

(iv) If the target sum is not found in any subarray, it prints the message “No subarray

found”.

(3) Index of the array starts at 1.

(4) The subprogram print() displays the input parameter in a new line.

(5) Table 1 shows the variables used in the program.

- 23 -

Table 1: Variables used in the program

Variable Description

N The size of the input array. N is not less than 1.

S The target sum

A[]
The input array. The values shown in Figure 1 are set

to the array elements by the program.

start The starting index of the current subarray

end The ending index of the current subarray

sum The current sum of the current subarray

[Program]

GLOBAL: INT: N  8, S  14

GLOBAL: INT: A[N]  {6, 3, 2, 5, 1, 1, 7, 3}

SUBPROGRAM: SSumNaive() {

 INT: sum, start, end, found  0

 FOR (start  1; start ≤ N; start  start + 1) {

 sum  0;

 FOR (end  ___A___; sum ≤ S and end ≤ N; end  end + 1) {

 sum  sum + A[end]; /* α */

 IF (S = sum) {

 print(start + ", " + end);

 found  1;

 }

 }

 }

 IF (___B___) {

 print("No subarray found");

 }

}

- 24 -

SUBPROGRAM: SSum2point() {

 INT: sum  ___C___, start  1, end, found  0

 FOR (end  1; end ≤ N; end  end + 1) {

 WHILE (S < sum and start < end) {

 sum  sum – A[start]; /* β */

 start  start + 1;

 }

 IF (S = sum) {

 print(start + ", " + end);

 found  1;

 }

 IF (end < N) {

 sum  sum + A[___D___];

 }

 }

 IF (___B___) {

 print("No subarray found");

 }

}

Subquestion 1

From the answer groups below, select the correct answer to be inserted in each blank

_______ in the above program.

Answer group for A and D

a) 0 b) 1

c) end d) end + 1

e) start f) start + 1

Answer group for B

a) found = 0 b) found = 1

c) found = S d) found > 1

Answer group for C

a) 0 b) A[1]

c) A[1] + A[2] d) S

- 25 -

Subquestion 2

From the answer groups below, select the correct answer to be inserted in each blank

_______ in the following description.

When subprogram SSumNaive is called, the line /* α */ is executed ___E___ times.

When subprogram SSum2point is called, the line /* β */ is executed ___F___ times.

Answer group for E

a) 8 b) 28

c) 29 d) 30

e) 36 f) 56

Answer group for F

a) 1 b) 2

c) 3 d) 4

e) 5 f) 6

g) 7 h) 8

Subquestion 3

From the answer group below, select the correct combination of the results of execution of

subprograms SSumNaive and SSum2point when array A[] contains zero or a negative

value. Here, “O” indicates that the result of execution is always correct, and “X” indicates

that the result is incorrect in some cases.

Answer group

 Subprogram SSumNaive Subprogram SSum2point

A[] contains

zero value

A[] contains

negative value

A[] contains

zero value

A[] contains

negative value

a) O O O O

b) O O O X

c) O O X X

d) O X O X

e) O X X X

f) X X X X

- 26 -

 Concerning questions Q7 and Q8, select one of the two questions.

 Then, mark the in the selection area on the answer sheet, and answer the question.

 If two questions are selected, only the first question will be graded.

Q7. Read the following description of a C program and the program itself, and then answer

Subquestions 1 through 3.

In mathematics, a perfect number is a positive integer whose sum of divisors is double of

the integer itself. For example, 6 is a perfect number because the sum of its divisors (1, 2,

3 and 6) is 12, which is the double of 6.

[Program Description]

The program outputs perfect numbers between 1 and 100 to the standard output.

The function divSum calculates the sum of divisors for integer num.

[Program]

#include <stdio.h>

int divSum(int num) {

 int result = 0;

 int i;

 for (i = 1; i * i <= num; i++) {

 if (num % i == 0) {

 result += ___A___;
 if (i != (num / i)) {

 result += ___B___;
 }

 }

 }

 return result;

}

/* α */
int main() {

 int i; /* β */
 printf("Perfect numbers that lie between 1 and 100:");

 for (i = 1; i <= 100; i++) {

 if (divSum(i) == 2 * i) {

 printf(" %d", i);

 }

 }

 printf("\n");

 /* γ */
 return 0;

}

- 27 -

Subquestion 1

From the answer group below, select the correct answer to be inserted in each blank

________ in the above program.

Answer group for A and B

a) i b) num

c) num % i d) num / i

e) result + i f) result + i % num

g) result + i / num

Subquestion 2

From the answer groups below, select the correct answer to be inserted in each blank

________ in the following description.

The concept of the perfect number can be extended to the (m, k)-perfect number. An

integer num is an (m, k)-perfect number when the equality below is true, where m and k are

positive integers.

For example, 16 is a (2, 2)-perfect number because divSum(16) = 1 + 2 + 4 + 8 + 16

= 31 and divSum(31) = 1 + 31 = 32. Therefore, the equality divSum(divSum(16)) =

2 * 16 is true.

In order to output (m, k)-perfect numbers as well as perfect numbers, the above program is

modified as follows:

(1) Replace the line marked /* α */ with the new function divSumM.

It applies divSum m times for a positive integer num.

int divSumM(int m, int num) {

 if (m > 1) {

 return ___C___;
 } else {

 return divSum(num); /* δ */ }
}

divSum(divSum(...divSum(num)...)) = k * num

Applied m times

- 28 -

(2) Replace the line marked /* β */ with the following statement. This adds

declarations of variables m and k.

 int i, m, k;

(3) Replace the line marked /* γ */ with the following statements that calculate (m, k)-

perfect numbers.

 printf("Enter two positive integers: ");

 scanf("%d %d", ___D___);
 printf("(%d, %d)-perfect numbers that lie between 1 and 100:",

 m, k);

 for (i = 1; i <= 100; i++) {

 if (divSumM(m, i) == k * i) {

 printf(" %d", i);

 }

 }

 printf("\n");

From the answer groups below, select the correct answer to be inserted in each blank

________ in the above description.

Answer group for C

a) divSum(m) b) divSum(m - 1)

c) divSum(num) d) divSum(num - 1)

e) divSumM(m - 1, divSum(num)) f) divSumM(m - 1, divSum(num - 1))

g) divSumM(m - 1, num) h) divSumM(m - 1, num - 1)

Answer group for D

a) m, k b) *m, *k c) *&m, *&k

d) &m, &k e) &*m, &*k

- 29 -

Subquestion 3

From the answer group below, select the correct answer to be inserted in the blank

________ in the following description.

The modified program is executed. The program produces the following output:

Perfect numbers that lie between 1 and 100: 6 28

Enter two positive integers: 3 6

(3, 6)-perfect numbers that lie between 1 and 100: 98

In this execution, the line marked /* δ */ is executed ___E___ times.

Answer group

a) 100 b) 200

c) 300 d) 400

e) 600 f) 700

- 30 -

Q8. Read the following description of Java programs and the programs themselves, and then

answer Subquestions 1 and 2.

The Java programs represent the POSIX-style tree structure of a file system consisting of

nodes. Each node represents a file or directory. Directories may contain other files and

directories, creating the tree structure. The root node is a special node representing the

topmost directory. All other files and directories are organized under the root node. The

programs are also capable of searching nodes with matching conditions.

(1) The Node class represents a node that is either a file or a directory. The class contains

the following attributes:

(i) name: The name of this Node, e.g., "MyLog.log". The name must not contain any

'/' (slash) characters.

(ii) extension: If this Node represents a file, it must have the extension in the node

name. The extension starts with a '.' (dot) character and indicates the type of this

file, such as ".txt" for text files. If there is more than one '.' in the name, the

last '.' designates the extension. If this Node represents a directory, this attribute

is null.

(iii) fullPath: The absolute path of this Node. Node names are separated by '/', e.g.,

"/home/user1/Desktop/note.txt".

(iv) parent: The parent directory containing this Node. All nodes must have their

parents, except for the root node.

(v) children: A list of nodes contained in this Node. Node names contained in the

same directory node must be unique. If this Node is a file, this attribute is null.

(vi) The ROOT class (static) field represents the root node.

(2) The ICondition interface represents conditions to search for nodes. The

isSatisfied method returns true if the specified Node meets the conditions, or

false otherwise.

(3) The NameCondition class implements the ICondition interface.

(i) The name attribute is the node name that the caller wants to find.

(ii) The isSatisfied method returns true if the name of the specified Node is equal

to the value of the name attribute, or false otherwise.

(4) The Search class contains a static method named searchByName that searches all

nodes under the specified node to find nodes the names of which are equal to the name

parameter.

(5) It is assumed that all constructers and methods are called with the correct parameters.

The following are string manipulation methods of the String class used in this question.

(1) String substring(int beginIndex)

- 31 -

Returns a string that is a substring of this string. The substring begins with the

character at the index specified by beginIndex (inclusive) and extends to the end of

this string.

(2) int indexOf(int ch)

Returns the index of the first occurrence of the character specified by ch, or -1 if the

character does not occur.

(3) int lastIndexOf(int ch)

Returns the index of the last occurrence of the character specified by ch, or -1 if the

character does not occur.

The following output is generated when the main method of the Search class is executed.

Some nodes info:

 "/"

 "/var/log/program.home.log" .log

 "/home/user1/document/note.txt" .txt

Result of searching nodes:

 ["/home/user1/document/note.txt" .txt]

[Program 1]

import java.util.ArrayList;

import java.util.List;

public class Node {

 public static final Node ROOT = new Node("", null, true);

 private final String name;

 private final Node parent;

 private final String extension;

 private final List<Node> children;

 private final String fullPath;

 private Node(String name, Node parent, boolean directory) {

 this.name = name;

 this.parent = parent;

 if (directory) {

 extension = null;

 children = new ArrayList<>();

 } else {

 extension = name.substring(___A___);

 children = null;

 }

 if (parent == null || parent == ROOT) {

 fullPath = "/" + name;

 } else {

 fullPath = ___B___ + "/" + name;

 }

 }

- 32 -

 public static Node create(String name, Node parent,

 boolean directory) {

 Node node = new Node(name, parent, directory);

 parent.children.add(node);

 return node;

 }

 @Override

 public String toString() {

 return "\"" + fullPath + "\""

 + (extension == null ? "" : " " + extension);

 }

 public String getName() { return name; }

 public String getExtension() { return extension; }

 public String getFullPath() { return fullPath; }

 public Node getParent() { return parent; }

 public boolean isDirectory() { return children != null; }

 public List<Node> getChildren() {

 return isDirectory() ? new ArrayList<>(children) : null;

 }

}

[Program 2]

public interface ICondition {

 boolean isSatisfied(Node node);

}

[Program 3]

public class NameCondition implements ICondition {

 private final String name;

 public NameCondition(String name) {

 this.name = name;

 }

 public String getName() { return name; }

 @Override

 public boolean isSatisfied(Node node) {

 return node.getName().equals(getName());

 }

}

- 33 -

[Program 4]

import java.util.ArrayList;

import java.util.List;

public class Search {

 private static List<Node> searchList(Node root,

 ICondition condition) {

 List<Node> result = new ArrayList<>();

 doSearchList(root, condition, result);

 return result;

 }

 private static void doSearchList(Node current, ICondition

condition,

 List<Node> result) {

 if (condition.isSatisfied(current)) {

 result.add(current);

 }

 if (___C___) {

 for (Node child : current.getChildren()) {

 doSearchList(child, condition, result);

 }

 }

 }

 public static List<Node> searchByName(Node root, String name) {

 ICondition condition = ___D___;

 return ___E___;

 }

 public static void main(String[] args) {

 Node home = Node.create("home", Node.ROOT, true);

 Node user1 = Node.create("user1", home, true);

 Node document = Node.create("document", user1, true);

 Node note = Node.create("note.txt", document, false);

 Node var = Node.create("var", Node.ROOT, true);

 Node tmp = Node.create("tmp", var, true);

 Node log = Node.create("log", var, true);

 Node logfile = Node.create("program.home.log", log, false);

 System.out.printf("Some nodes info:%n %s%n %s%n %s%n%n",

 Node.ROOT, logfile, note);

 System.out.printf("Result of searching nodes:%n %s%n",

 searchByName(Node.ROOT, "note.txt"));

 }

}

- 34 -

- 35 -

Subquestion 1

From the answer groups below, select the correct answer to be inserted in each blank

_______ in Program 1 and Program 4.

Answer group for A

a) name.indexOf('.') b) name.indexOf('.') + 1

c) name.indexOf('.') - 1 d) name.lastIndexOf('.')

e) name.lastIndexOf('.') + 1 f) name.lastIndexOf('.') - 1

Answer group for B

a) "/" + parent.fullPath b) "/" + parent.name

c) fullPath d) name

e) parent.fullPath f) parent.name

Answer group for C

a) current == Node.ROOT b) current.getChildren() == null

c) current.getChildren().size() > 0 d) current.isDirectory()

e) result == null f) result.size() == 0

Answer group for D

a) ICondition(name) b) NameCondition(name)

c) new ICondition(name) d) new NameCondition(name)

Answer group for E

a) doSearchList(root, condition, new ArrayList<>())

b) doSearchList(root.getChildren(), condition, new ArrayList<>())

c) doSearchList(root.getParent(), condition, new ArrayList<>())

d) searchList(root, condition)

e) searchList(root.getChildren(), condition)

f) searchList(root.getParent(), condition)

- 36 -

Subquestion 2

From the answer groups below, select the correct answer to be inserted into each blank

_______ in Program 5.

Typically, users may want to find files or directories whose names partially match the

specified string rather than exact names. For example, when searching for "home" with the

same Node instances created in Program 4, only two nodes, file program.home.log and

directory home, match the partial name condition because their names contain the string

"home". Program 5 is the implementation of a new class named PartialNameCondition

for the partial name matching condition.

[Program 5]

public class PartialNameCondition extends NameCondition {

 public PartialNameCondition(String name) {

 ___F___;

 }

 @Override

 public boolean isSatisfied(Node node) {

 return ___G___;

 }

}

Answer group for F

a) return b) super()

c) super(name) d) this(name)

e) this.name = name

Answer group for G

a) getFullPath().contains(node.getFullPath())

b) getName().contains(node.getName())

c) node.getFullPath().contains(getFullPath())

d) node.getFullPath().contains(getName())

e) node.getName().contains(getFullPath())

f) node.getName().contains(getName())

