

October 2009

Fundamental IT Engineer Examination (Afternoon)

Questions must be answered in accordance with the following:

Question Nos. Q1 - Q5 Q6 , Q7 Q8 , Q9

Question Selection Compulsory Select 1 of 2 Select 1 of 2

Examination Time 13:30 - 16:00 (150 minutes)

Instructions:
1. Use a pencil. If you need to change an answer, erase your previous answer completely and

neatly. Wipe away any eraser debris.

2. Mark your examinee information and test answers in accordance with the instructions

below. Your answer will not be graded if you do not mark properly. Do not mark or write
on the answer sheet outside of the prescribed places.
(1) Examinee Number

Write your examinee number in the space provided, and mark the appropriate space
below each digit.

(2) Date of Birth
Write your date of birth (in numbers) exactly as it is printed on your examination
admission card, and mark the appropriate space below each digit.

(3) Question Selection
For (Q6, Q7) and (Q8, Q9), mark the S of the question you select to answer in
the “Selection Column” on your answer sheet.

(4) Answers
Mark your answers as shown in the following sample question.

[Sample Question]

In which month is the autumn Fundamental IT Engineer Examination conducted?

Answer group

a) September b) October c) November d) December

Since the correct answer is “ b) October ”, mark your answer sheet as follows:

[Sample Answer]

1

Do not open the exam booklet until instructed to do so.

Inquiries about the exam questions will not be answered.

ウA C D

Company names and product names appearing in the test questions are trademarks or registered trademarks of

their respective companies. Note that the ® and ™ symbols are not used within.

[Explanation of the Pseudo-Code Description Format]

Pseudo-Language Syntax Description

o Declares names, types, etc. of procedures,
variables, etc.

 Variable ← Expression Assigns the value of an Expression to a Variable.

Conditional expression

 Process
A selection process.
If the Conditional expression is true,
then Process is executed.

Conditional expression

 Process 1

 Process 2

A selection process.
If the Conditional expression is true,
then Process 1 is executed.
If it is false,
then Process 2 is executed.

Conditional expression

 Process
A repetition process with the termination condition
at the top.
The Process is executed while the Conditional
expression is true.

[Operator]

Operation Operator Priority

Unary operation + - not High

Multiplication and division
operation

* /

Addition and subtraction
operation

+ -

Relational operation > < >= <= =

Logical product and

Logical sum and
Exclusive logical sum

or xor Low

[Logical type constant]

true false

- 1 -

Questions 1 through 5 are all compulsory. Answer every question.

Q1 Read the following description concerning multiplication operation on binary integers,

and then answer Subquestion.

Generally, electronic circuits such as ALU’s execute multiplication operation on signed

binary integers by using addition, subtraction and shifting operations. Booth’s algorithm

shown in the flowchart below can execute multiplication effectively for this purpose.

There are three 4-bit registers: A, Q and M. Two signed binary integers, multiplicand and

multiplier, are first stored in registers Q and M, respectively. In the flowchart below, Q0

represents the least significant bit in register Q. Q-1 holds the bit that will be shifted out

from Q by Shift right arithmetic operation. A and Q-1 are initialized to 0. The final product

will be stored in registers A and Q as an 8-bit signed integer. Here, assume that M ≠ -8.

START

i Number of bits

Q0 Q-1

A A + M A A – M

Shift Right Arithmetic: A, Q, Q-1

i i – 1

i > 0

END

01 10

00,11

Yes

No

... The least significant
bit in A is shifted to
the most significant bit
in Q, and the least
significant bit in Q is
shifted to Q-1.

- 2 -

The following figure illustrates the calculation of 5 (0101) × -3 (1101) = -15 (1111 0001),

using the Booth’s algorithm.

A Q Q-1 M Operation Note

0000 0101 0 1101 Initial values

0011 0101 0 1101 Add or Subtract

Cycle 1
0001 1010 1 1101 Arithmetic Shift

A 1010 1 1101 Add or Subtract
Cycle 2

B 0101 0 1101 Arithmetic Shift

C 0101 0 1101 Add or Subtract
Cycle 3

D 0010 1 1101 Arithmetic Shift

1110 0010 1 1101 Add or Subtract

Cycle 4
1111 0001 0 1101 Arithmetic Shift

Subquestion

From the answer group below, select the correct answers to be inserted into the blanks

 . in the above figure.

Answer group

a) 0000

b) 0001

c) 0010

d) 0011

e) 1100

f) 1101

g) 1110

h) 1111

- 3 -

Q2 Read the following description concerning the solution of a problem, and then answer

Subquestion.

This is one of old Mongolian problems.

There is a land shown in Figure 1, which is

separated by a river into Right and Left
sides.

There are n animals, T1, T2, T3, …, Tn, in

the Right side. The provided condition is

that animal Tk eats animal Tk-1 but is eaten

by Tk+1 (1 < k < n), then move the animals

to the Left side alive using a boat.

Here:

1. n is any positive integer number.

2. A boat can carry up to m animals, where m= [n / 2], an integer part of n / 2. The owner

of animals sails a boat, and the owner’s weight is not included in m.

3. Not let the animals eat each other while they are being moved from the Right side to the

Left side of the river.

4. The animals won’t eat each other when the owner is with them.

5. The owner will load and unload the animals as well as sail the boat until the process is

finished.

6. It is allowed to take the animals, already in the Left side, back to the Right side.

[Sample solution steps for n = 3]

Input:

1. n = 3.

2. T1 = Cabbage; T2 = Goat; T3 = Wolf.
3. m = 1 (the boat can carry one animal

besides the owner).

Output:

1. Cabbage, Goat and Wolf should be

taken to the Left side alive.

Process:

1. Take the Goat from Right side to Left side.

2. Go back from Left side to Right side alone.

3. Take the Cabbage from Right side to Left side.

4. Take back the Goat from Left side to Right side.

- 4 -

5. Take the Wolf from Right side to Left side.

6. Go back from Left side to Right side alone.

7. Take the Goat from Right side to Left side.

8. Stop.

[Solution steps for any positive integer n]

Input:

1. n : any positive integer number.

2. T1, T2, T3, …,Tn : the animals that satisfy the given condition.

3. m : [n / 2] (the boat can carry m animals at once besides the owner).

Output:

1. n animals, T1, T2, T3, …, Tn, should be taken alive to the Left side.

Process:

1. Take from the Right side . A . to the Left side.

2. Go back from Left side to Right side alone.

3. Take from the Right side . B . to the Left side.

4. If an animal is left in the Right side, then go to Step 5, else go to Step 9.

5. Take from the Left side . C . to the Right side.

6. Take from the Right side . D . to the Left side.

7. Go back from Left side to Right side alone.

8. Take from the Right side . E . to the Left side.

9. Stop.

- 5 -

Subquestion

From the answer group below, select the correct answers to be inserted into the blanks

 . in the above description.

The same answer can be selected more than once, if needed.

Answer group

a) T1

b) T2

c) T2*m

d) T2*m+1

e) T1, T2, T3, …, Tm-1, Tm

f) Tm+1, Tm+2, Tm+3, …, Tn-1, Tn

g) T1, T3, T5, …, T2*m-3, T2*m-1

h) T2, T4, T6, …, T2*(m-1), T2*m

- 6 -

Q3 Read the following description concerning relational database design, and then answer

Subquestions 1 through 3.

A hospital aims to build a database for patient admission and treatment.

The results from the requirement analysis are as follows:

The hospital has a large number of registered physicians. Information for a physician need

to be recorded is physician name, physician address, contact phone, and specialty. Patients

are admitted to the hospital by a physician. Patient information such as patient name,

patient address, and contact phone, is recorded at the time of admission. Any patient who is

admitted must have exactly one admitting physician. A physician may admit any number of

patients. Once admitted, a patient must be treated by at least one physician. A particular

physician may treat any number of patients, or may not treat any patients.

The following table shows explanation of symbols used in the question.

Subquestion 1

From the answer group below, select the correct Entity Relationship Diagram to fulfill the

business requirement.

Answer group

a)

b)

 One or more

 Zero or More

 Exactly One

 Zero or One

- 7 -

c)

d)

Subquestion 2

Many-to-Many relationship cannot be implemented for relational database management

system so that it is required to do relational analysis to get finalized ERD (Entity

Relationship Diagram).

From the answer group below, select the correct ERD after performing relational analysis.

Answer group

a)

- 8 -

b)

c)

d)

- 9 -

Subquestion 3

The hospital requires two reports: Treatment history for particular patient including

information of physicians, and Statement of daily admission report for a particular

physician. For the sake of performance, which of the following is correct use of index

From the answer group below, select the correct use of indexes in order to improve the

database performance.

Answer group

a) [Index on Patient No for Patient table], [Index on Physician No for Physician table]

b) [Index on Patient No for Patient table], [Index on Physician No for Physician table],

[Index on Pyisician No and Patient No for Treatment table]

c) [Index on Physician No for Physician table],

[Index on Pyisician No for Treatment table]

d) [Index on Patient No for Patient table], [Index on Patient No for Treatment table]

- 10 -

Q4 Read the following description of a program and the program itself, and then answer

Subquestions 1 and 2.

[Program Description]

eightQueens is a subprogram that puts eight chess queens on 8×8 chessboard. The queens

must be placed in such a way that no two queens would be able to attack each other using the

standard chess queen's moves. Figure 1-(1) illustrates the power of a single queen (indicated

by a Q character).

Thus, a solution requires that no two queens share the same row, column, or diagonal line.

Figure 1-(2) shows a sample solution to this problem.

X X X Q
 X X X Q
 X X X Q
X X X Q X X X X Q
 X X X Q
 X X X Q
X X X Q
 X X Q

 (1) The queen can attack (2) Sample solution to
 any square with an X Eight Queens problem

Figure 1. The Eight Queens Problem

(1) The subprogram eightQueens is called recursively. It involves both recursive and

interactive looping.

a. A recursive call is made after each successful placement of a queen, if an

eighth queen has not been placed.

b. A return from recursive call indicates that one of two events has happened.

- In the failure case, the algorithm failed to place the next queen and must

therefore backtrack to the last-placed queen, remove it, place it at the next safe

board position, and then look for the next safe board position for the next

queen.

- In the success case, the algorithm just placed all eight queens and must now

unwind completely from all recursive calls without attempting to place other

queens or disturbing already-placed queens.

(2) Chess board is presented by using a two-dimensional character array board[][].

Indexes of rows and columns of this array is from 1 to 8 and the initial values of

elements of this array are set to ' '.

(3) A global variable queenCount is used to store the number of the safe-placed Queens.

- 11 -

The initial value of this variable is set to 0.

(4) The initial call is eightQueens(1,1).

(5) eightQueens uses the subprogram findSafePosition that finds the next safe

position starting with the current board position given in its paramaters. If

findSafePosition doesn’t find a safe position, it returns a false value; otherwise it

returns a true value as well as the row and column of the safe position through the

parameters.

(6) The subprogram isAttack checks if the position given in its parameters is the safe

position or not. If this position is the safe position, it returns a true value; otherwise it

returns a false value.

(7) The parameters of the subprograms are shown in the tables below.

Table 1 Specification of the parameters of findSafePosition

Name of parameter Input/Output Description

Row Input/Output The row of the current position for searching

the next safe position. It also is the row of the

safe position returned if found

Col Input/Output The column of the current position for

searching the next safe position. It also is the

column of the safe position returned if found

Table 2 Specification of the parameters of isAttack

Name of parameter Input/Output Description

R Input The row of the position for checking

C Input The column of the position for checking

- 12 -

[Program]

o character: board[8][8]
o integer: queenCount = 0
o eightQueens(integer: row, integer: col)
o logical: found = true
 queenCount < 8 and found

• A .
found = true
• board[row][col] = 'Q'
• queenCount queenCount + 1

 B .
 • eightQueens(row, col)

queenCount < 8

 • board[row][col] = ' '
 • C .
 • col col + 1

 col = 9
• col 1
• row row + 1

 row = 9
• found false
• found true

o logical: findSafePosition(integer: row, integer: col)
o integer: r, c
o logical: found = false
• c col
• r row
 c = 9

• c 1
• r r + 1

 not found and r < 9

 D .
• row r
• col c
• return true
• c c + 1
c = 9
• c 1
• r r + 1

 return false

- 13 -

o logical: isAttack(integer: r, integer: c)
o integer: r1, c1
• r1 1
 r1 <= r

• c1 1
 c1 < 9

board[r1][c1] = 'Q'

 E .
 • return true

• c1 c1 + 1

• r1 r1 + 1

• return false

Subquestion 1

From the answer groups below, select the correct answers to be inserted into the blanks

 . in the above program.

Here, the function abs returns the absolute value of the integer parameter.

Answer group for A and C

a) found findSafePosition(row, col + 1)

b) found findSafePosition(row, col)

c) queenCount queenCount – 1

d) queenCount queenCount + 1

Answer group for B
a) found = false b) queenCount < 8

c) queenCount = 8 d) queenCount > 8

Answer group for D

a) isAttack(r, c) = false b) isAttack(r, c) = true

c) isAttack(r1, c1) = false d) isAttack(r1, c1) = true

Answer group for E

a) r = r1 and c = c1 and abs(r - r1) = abs(c - c1)

b) r = r1 and c = c1 or abs(r - r1) = abs(c - c1)

c) r = r1 or c = c1 and abs(r - r1) = abs(c - c1)

d) r = r1 or c = c1 or abs(r - r1) = abs(c - c1)

- 14 -

Subquestion 2

From the answer group below, select the correct answers to be inserted into the blanks

 . in the following description.

After 5 times that the eightQueens subprogram is called, the 5th queen is placed at the

position F . . After 6 times, the 6th queen is placed at the position G . .

Here, a position is represented by “(row, column)”.

Answer group

a) (4, 2) b) (5, 4)

c) (5, 8) d) (7, 4)

- 15 -

Q5 Read the following description concerning a project costing system, and then answer

Subquestion.

A project costing system consists of three subsystems. The first subsystem is time

management that records time of work of all employees. The second subsystem is payroll

that makes use of data from the time management subsystem to calculate employees’ weekly

pay. The third subsystem is project monitoring that calculates computer usage and

employees’ pay related to each of the projects.

[File Description]

(1) Employee file contains employee id, employee name, pay rate for regular hours,

overtime rate for overtime hours, and employee’s terminal id. An employee’s total

pay is the sum of regular hours multiplied by pay rate and overtime hours multiplied

by overtime rate.

The record format for Employee file:
employee_id employee_name pay_rate ot_rate terminal_id

(2) Project file contains project id, project name, and manager id.

The record format for Project file:
project_id project_name manager_id

(3) Timelog file is maintained by the time management subsystem. It contains daily time

records. Employees time-in and time-out each time they start and end work on a

specific project. They can work on several projects in a day but never simultaneously.

They also work on a project only once in a day. Timelog is only a log of an event. A

record can only have either time-in or time-out but never both. The other field will be

NULL in value.

The record format for Timelog file:
date time_in time_out employee_id project_id

(4) Mainframelog file is a system generated mainframe usage log. Mainframe use costs

$0.10 per second, and terminal use costs $3 per hour.

The record format for Mainframelog file:
terminal_id job_id date start_time end_time elapsed_time

[Program Description]

(1) Employees log on to the system with the employee id and the project id each time they

start to work for a project. They get automatically logged out when they log in to a

new project or shutdown to leave. Timelog record is created based on this activity.

- 16 -

(2) Time management subsystem creates a DTS (daily time summary) file at the end of

the day. It contains employee id, project id, worked hours per project, and overtime

hours per project.

The record format for DTS file:
date employee_id project_id worked_hours ot_hours

(3) Overtime is classified as time worked in excess of 8 hours each day. But if the total

time for the day is less than 9 hours, it is still classified as regular work hours.

(4) Payroll subsystem prepares a weekly summary and calculates the weekly pay.

It generates a weekly payroll report sorted by employee name, as shown below.

Weekly Payroll Ending <date>

Employee ID Name Worked Hours OT Hours Salary

9873 James Nguyen 48.5 8.0 $525.00

7890 Peter Ng 36.0 2.0 $370.00

(5) At the end of each day, the actual overtime hours of every employee is distributed

proportionately across the projects he/she worked on for that day.

(6) Project managers monitor project costing based on the employee salary and also

computer time (both mainframe and terminal use). They periodically generate a

project costing report sorted by project name.

Project
ID

Name Time (min) Cost Salary Total
Cost mainframe terminal

984 Annealing Test 8.5 80.0 $55.0 $800 $855.00

129 Genetic Run 16.0 245.0 $108.25 $2700 $2808.25

(7) ErrorRtn (record, message) is a procedure that writes to an Error log file. A record

that is in error and the corresponding error message will be recorded.

(8) Flowchart(1) in Figure 1 calculates the worked hours per project (overtime hours per

project is not calculated in this flowchart), and outputs it to the DTS file.

For the execution of flowchart(1), the Timelog file must be sorted by A . ,

each in ascending order.

- 17 -

Figure 1. Flowchart(1)

Read record

Set record as FIRST

START
X

 match employee_id

and project_id of FIRST and

SECOND

ErrorRtn (FIRST, “ B “)

ErrorRtn (SECOND, “ B “)

Read record

Set record as SECOND

NO MATCH

X
 check employee_id

and project_id

ErrorRtn (FIRST, “employee_id or project_id not valid”)

ErrorRtn (SECOND, “employee_id or project_id not valid”)

X

NOT VALID

 time_in < time_out

Timelog

ErrorRtn (FIRST, “ C “)

ErrorRtn (SECOND, “ C “)

X

NO

calculate worked_hours (per project)

DTS

Timelog EOF
STOP

YES

X

time_out

X

NULL FIRST record has the

time_in and SECOND record

has the time_out of an

employee for a project

for that day

ErrorRtn (FIRST, “no matching 2nd record”)

ErrorRtn (SECOND, “time_out has null value”)

time_in

X

ErrorRtn (FIRST, “time_in has null value”)
NULL

… When EOF, time_in will have
 High value (not NULL)

… When EOF, time_out will have
 High value (not NULL)

- 18 -

(9) After computing worked hours per project and creating DTS file by Flowchart(1) in

Figure 1, a temporary file, which contains the total hours worked per day of each

employee, is created from the DTS file. The temporary file is used along with the

DTS file in Flowchart(2) in Figure 2, in order to compute overtime hours per project.

The minimum fields needed by the temporary file are D . , and total_hours.

Here, the total_hours contains the total hours worked per day of each employee.

Figure 2. Flowchart(2)

(10) The payroll subsystem needs to use the files G . and H . to generate

the weekly payroll report. The project costing report will use all the files except the

temporary file.

 write DTS record
 read DTS record

Key fields of DTS file
and temporary file

START

EOF

total_ot total_hours – 8

IF total_ot < 1 then total_OT 0

temporary file: EOF

X

X

not matched

temporary

file

F

E

Read temporary record

DTS
file

EOF STOP
DTS file: EOF

Read DTS record

DTS
file

- 19 -

Subquestion

From the answer groups below, select the correct answers to be inserted into the blanks

 . in the above description.

Answer group for A and D

a) date, employee_id

b) date, employee_id, project_id, time_in

c) date, employee_id, project_id, time_out

d) employee_id, project_id

e) project_id, employee_id, time_in

Answer group for B and C

a) employee ID or project ID did not match

b) employee ID or project ID is empty

c) employee ID or project ID was not found

d) time in has null values

e) time out has null values

f) worked hours cannot be computed

Answer group for E and F

a) ot_hours 0

b) ot_hours total_ot / project_count

c) ot_hours worked_hours / total_hours

d) ot_hours worked_hours / total_hours * total_ot

e) total_ot 0

f) total_ot 1

Answer group for G and H

a) DTS

b) Employee

c) Mainframelog

d) Project

e) Timelog

- 20 -

Concerning questions Q6 and Q7, select one of the two questions. Then, mark s in the

selection area on the answer sheet, and answer the question.

If two questions are selected, only the first question will be graded.

Q6 Read the following description of a C program and the program itself, and then answer

Subquestion.

[Program Description]

The program searches a search string of length n for a pattern string of length m. Each time a

pattern string is found in a search string, the program outputs its character position. A search

string contains 27 types of characters: ' ' and 'A' - 'Z'.

The following figure illustrates how the program finds the pattern string "SING" in the search

string "THIS SEARCH USING".

Character position

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Search String T H I S S E A R C H U S I N G
Pattern String S I N G

1st comparison S I N G
2nd comparison S I N G
3rd comparison S I N G
4th comparison S I N G
5th comparison S I N G

1st comparison: Locate the pattern string at the top (character position 0) of the search string.

Then, check if the first 4 characters of the search string match with "SING".

Comparison is done character by character, from right to left. If the characters are matched,

then move to the previous position and repeat the same operation. Otherwise, examine the

unmatched character in the search string (in this case, "S" at position 3) to check if it appears

in the pattern string. In this case, "S" appears in the pattern string. Then, shift the pattern

string to the right so that both "S"s share the same position.

2nd comparison: The same operation as in 1st comparison is done. In this comparison, the

unmatched character in the search string ("E" at position 6) does not appear in the pattern

string. Then, shift the pattern string m (in this case, 4) positions to the right.

3rd - 5th comparison: The same operations as in 1st and 2nd comparison are done. Finally, at

position 13, the string "SING" is found, and the program outputs the following message.

Found at position 13

- 21 -

[Program]

 #include <stdio.h>

 // ASIZE represents the number of characters used (' ', 'A' - 'Z').

 #define ASIZE 27

 void OUTPUT (int a) {

 printf ("Found at position %d\n", a);

 }

 /* Function: Maps a character to an index in the table.

 0 is assign to ' ', and 1 - 26 are assigned to 'A' - 'Z'.

 */

 int getIndex (char x) {

 int ret_val;

 if (x == ' ') // if the character is a space

 ret_val = 0;

 else

 ret_val = . A . ;
 return ret_val;

 }

 /* Function: Determines slide positions of each character.

 *x - pattern string

 m - length of pattern string

 Slideto - array containing slide positions

 */

 void computeSlideToPosition(char *x, int m, int slideTo []) {

 int i;

 for (i = 0; i < ASIZE; ++i)

 slideTo [i] = m;

 for (i = 0; i < m - 1; ++i)

 slideTo [getIndex(x[i])] = m - i - 1;

 }

- 22 -

 /* Function: Search for pattern string *x in the search string *y.

 *x - pattern string

 m - length of pattern string

 *y - search string

 n - length of search string

 */

 void searchString(char *x, int m, char *y, int n) {

 int i, j, incr, slideTo[ASIZE];

 computeSlideToPosition (x, m, slideTo);

 j = 0;

 while (j <= . B .) {
 for (i = m - 1; i >= 0 && x[i] == y[i + j]; --i);

 if (. C .) {
 OUTPUT(j);

 j += 1;

 }

 else {

 incr = slideTo [getIndex(y[i + j])] - m . D . ;
 if (incr > 0) {

 j += incr;

 }

 else {

 j += 1;

 }

 }

 }

 }

 int main(void) {

 searchString("SING", 4, "THIS SEARCH USING", 17);

 return 0;

 }

Subquestion

From the answer groups below, select the correct answers to be inserted into the blanks

 . in the above program.

Answer group for A
a) x b) x - 'A'

c) x - 'A' – 1 d) x - 'A' + 1

- 23 -

Answer group for B
a) m b) n c) n – m d) n + m

Answer group for C
a) i < 0 b) i > 0 c) j < 0 d) j > 0

Answer group for D
a) + 1 b) + i

c) + i – 1 d) + i + 1

- 24 -

Q7 Read the following description of Java programs and the programs themselves, and then

answer Subquestions 1 and 2.

[Program Description]

The program 1 illustrates member variables (class and instance), local variables, and method

parameters.

The output from the program 1:
Class variable is 1

Instance variable is 2

Method parameter is 3

Local variable is 4

Whenever an instance method is invoked on an object, a hidden reference named this is

always passed to the method. The this reference always refers to the object on which the

method was invoked. This makes it possible for the code in the method to refer back to the

object on which the method was invoked. The reference named this can be used to access the

member variables hidden by the local variables or parameters having of the same name.

The program 2 illustrates the use of the this reference to access a hidden instance variable

named myVar and a hidden class variable named yourVar.

The output from the program 2:
myVar parameter = 1

local yourVar variable = 2

Instance variable myVar = 3

Class variable yourVar = 4

[Program 1]

class JavaProg1 { // define the controlling class

 // declare and initialize variables

 . A . classVariable = 1;
 int instanceVariable = 2;

 public static void main(String[] args) { // main method

 System.out.println("Class variable is " + classVariable);

 // declare and intitialize variable

 int localVariable = 4;

 // instantiate an object of the class to allow

- 25 -

 // for access to instance variable and method

 JavaProg1 obj = new JavaProg1();

 System.out.println("Instance variable is "

 + . B .);
 obj.myMethod(3); // invoke the method

 System.out.println("Local variable is " + localVariable);

 } //end main

 void myMethod(int methodParameter) {

 System.out.println("Method parameter is "

 + methodParameter);

 } // end myMethod

} // end JavaProg1 class.

[Program 2]

class JavaProg2 {

 int myVar = 0;

 static int yourVar = 0;

 // constructor with parameters named myVar and yourVar

 public JavaProg2(int myVar, int yourVar) {

 this.myVar = myVar;

 this.yourVar = yourVar;

 } // end constructor

 // method with parameter named myVar

 // and local variable named yourVar

 void myMethod(int myVar) {

 int yourVar = 2;

 System.out.println("myVar parameter = " + myVar);

 System.out.println("local yourVar variable = "

 + yourVar);

 System.out.println("Instance variable myVar = "

 + this.myVar);

 System.out.println("Class variable yourVar = "

 + . C .);
 } // end myMethod

 public static void main(String[] args) {

 JavaProg2 obj = new JavaProg2(3, 4);

 obj.myMethod(1);

 } // end main method

} // end JavaProg2 class definition.

- 26 -

[Program 3]

public class JavaProg3 {

 public static void main (String args[]) {

 new Worker().doIt();

 } // end main()

} // end class JavaProg3

class Worker {

 void doIt() {

 Base myVar = new A();

 myVar.test();

 System.out.println("");

 } // end doIt()

} // end class Worker

class Base {

 public void test() {

 System.out.print("Base ");};

} // end class Base

class A extends Base {

 public void test() {

 System.out.print("A ");

 } // end test()

} // end class A

Subquestion 1

From the answer groups below, select the correct answers to be inserted into the blanks

 . in the above program.

Answer group for A
a) final int b) int

c) static int d) volatile int

Answer group for B
 a) instanceVariable

b) obj.instanceVariable

 c) obj.myMethod(instanceVariable)

d) this.instanceVariable

- 27 -

Answer group for C
 a) myVar b) this.myVar

 c) this.yourVar d) yourVar

Subquestion 2

From the answer group below, select the correct output from the [Program 3].

Answer group
 a) "A " b) "A Base "

 c) "Base " d) "Base A "

- 28 -

Concerning questions Q8 and Q9, select one of the two questions. Then, mark s in the

selection area on the answer sheet, and answer the question.

If two questions are selected, only the first question will be graded.

Q8 Read the following description of a C program and the program itself, and then answer

Subquestion.

[Program Description]

This is the program for playing the game called “paper, rock, scissors”. In this game, each

child uses his/her hand to represent one of the three objects. A flat hand held in a

horizontal position represents “paper”, a clenched fist represents “rock”, and index and

middle fingers extended and separated represent “scissors”. The children face each other

and display their choices. If the choices are the same, then the game is a tie. Otherwise, a

win is determined by the following rules:

• Paper covers the rock; paper wins against rock.

• Rock breaks the scissors; rock wins against scissors.

• Scissors cut the paper; scissors win against paper.

The program uses enum to declare enumeration types. It provides a means of naming a

finite set, and of declaring identifiers as elements of the set.

The following list shows a part of the variables used in the program.

enum p_r_s represents the player’s choices

• paper – The player displays paper.
• rock – The player displays rock.
• scissors – The player displays scissors.
• game – The player outputs game status.
• help – The player outputs game’s help.
• quit – The player quits the game.

enum outcome represents the game status (win, lose, tie, or error)

player_choice player’s choice (see enum p_r_s)

machine_choice program generated random choice (paper, rock, scissors)

- 29 -

win_cnt player’s winning count

lose_cnt player’s losing count

tie_cnt player’s tied count

[Program]

/* The game of paper, rock and scissors. */

#include <ctype.h> /* for isspace() */

#include <stdio.h> /* for printf(), etc */

#include <stdlib.h> /* for rand() and srand() */

#include <time.h> /* for time() */

enum p_r_s {paper, rock, scissors, game, help, quit};

enum outcome {win, lose, tie, error};

typedef enum p_r_s p_r_s;

typedef enum outcome outcome;

outcome compare(p_r_s player_choice, p_r_s machine_choice);

void prn_final_status(int win_cnt, int lose_cnt);

void prn_game_status(int win_cnt, int lose_cnt, int tie_cnt);

void prn_help(void);

void report_and_tabulate(outcome result, int *win_cnt_ptr,

 int *lose_cnt_ptr, int *tie_cnt_ptr);

p_r_s selection_by_machine(void);

p_r_s selection_by_player(void);

void prn_final_status(int win_cnt, int lose_cnt)

{

 if (. A .)
 printf("CONGRATULATIONS - You won!\n\n");

 else if (. B .)
 printf("A DRAW - You tied!\n\n");

 else

 printf("SORRY - You lost!\n\n");

}

void prn_game_status(int win_cnt, int lose_cnt, int tie_cnt)

{

 printf("\n%s\n%s%4d\n%s%4d\n%s%4d\n%s%4d\n\n",

 "GAME_STATUS:",

 " Win: ", win_cnt,

 " Lose: ", lose_cnt,

 " Tie: ", tie_cnt,

 " Total: ", win_cnt + lose_cnt + tie_cnt);

- 30 -

}

void prn_help(void)

{

 printf("\n%s\n",

 "The following characters can be used for input:\n"

 " p if button p is pressed, display paper\n"

 " r if button r is pressed, display rock\n"

 " s if button s is pressed, display scissors\n"

 " g if button g is pressed, print the game status (count of

win, lost, tie and total played)\n"

 " h if button h is pressed, print help, print this list\n"

 " q if button q is pressed, quit this game\n");

}

p_r_s selection_by_machine(void)

{

 return ((p_r_s) (rand() % 3));

}

p_r_s selection_by_player(void)

{

 int c;

 char str[256];

 p_r_s player_choice;

 player_choice = help;

 printf("Input p, r, or s: ");

 fgets(str, 256, stdin);

 for (c=0; !isspace(str[c]) && c < strlen(str); c++) {

 switch (str[c]) {

 case 'p': player_choice = paper;

 break;

 case 'r': player_choice = rock;

 break;

 case 's': player_choice = scissors;

 break;

 case 'g': player_choice = game;

 break;

 case 'q': player_choice = quit;

 break;

 default: break;

 }

 }

 return player_choice;

}

- 31 -

outcome compare(p_r_s player_choice, p_r_s machine_choice)

{

 outcome result;

 if (. C .)
 return tie;

 switch (player_choice) {

 case paper:

 result = (machine_choice == rock) ? win : lose;

 break;

 case rock:

 result = (machine_choice == scissors) ? win : lose;

 break;

 case scissors:

 result = (machine_choice == paper) ? win : lose;

 break;

 default:

 printf("\nPROGRAMMER ERROR: Unexpected choice!\n\n");

 exit(1);

 }

 return result;

}

void report_and_tabulate(outcome result, int *win_cnt_ptr,

 int *lose_cnt_ptr, int *tie_cnt_ptr)

{

 switch (result) {

 case win:

 . D . ;
 printf("%27sYou win.\n", "");

 break;

 case lose:

 ++*lose_cnt_ptr;

 printf("%27sYou lose.\n", "");

 break;

 case tie:

 ++*tie_cnt_ptr;

 printf("%27sA tie.\n", "");

 break;

 default:

 printf("\nPROGRAMMER ERROR: Unexpected result!\n\n");

 exit(1);

 }

}

- 32 -

int main(void)

{

 int win_cnt = 0, lose_cnt = 0, tie_cnt = 0;

 outcome result;

 p_r_s player_choice, machine_choice;

 srand(time(NULL)); /* seed the random number generator */

 while ((player_choice = selection_by_player()) != quit)

 {

 switch (player_choice) {

 case paper:

 case rock:

 case scissors:

 machine_choice = selection_by_machine();

 result = compare(player_choice, machine_choice);

 report_and_tabulate(result, &win_cnt, &lose_cnt, &tie_cnt);

 break;

 case game:

 . E . ;
 break;

 case help:

 prn_help();

 break;

 default:

 printf("\nPROGRAMMER ERROR: Cannot get to here!\n\n");

 exit(1);

 }

 }

 prn_game_status(win_cnt, lose_cnt, tie_cnt);

 prn_final_status(win_cnt, lose_cnt);

 return 0;

}

Subquestion

From the answer groups below, select the correct answers to be inserted into the blanks

 . in the above program.

Answer group for A and B
a) win_cnt < lose_cnt

b) win_cnt <= lose_cnt

c) win_cnt == lose_cnt

d) win_cnt > lose_cnt

- 33 -

Answer group for C
a) player_choice < machine_choice

b) player_choice <= machine_choice

c) player_choice == machine_choice

d) player_choice > machine_choice

e) player_choice >= machine_choice

Answer group for D
a) ++*win_cnt_ptr

b) ++win_cnt_ptr

c) --*win_cnt_ptr

d) --win_cnt_ptr

e) *win_cnt_ptr++

f) win_cnt_ptr++

g) *win_cnt_ptr--

h) win_cnt_ptr--

Answer group for E
a) prn_final_status(win_cnt, lose_cnt)

b) prn_game_status(win_cnt, lose_cnt, tie_cnt)

c) prn_help()

d) report_and_tabulate(result, win_cnt, lose_cnt, tie_cnt)

- 34 -

Q9 Read the following description of a Java program and the program itself, and then answer

Subquestion.

A simple bank account simulation program is written in GUI java. This simulation allows the

user to create a new account and test it. There are two methods given for account

management: deposit and withdraw.

method description

deposit To add the amount to the bank account

withdraw To subtract the amount from the bank account

There are two screens given: Create Account and Test Account. Create Account screen is

used to create a new account number. Test Account screen is used to test deposit and

withdrawal operations for the bank account.

Diagram 1: Create Account

Diagram 1 shows a sample input screen. The user is asked to enter a numeric account number

and the initial balance. The user then clicks on the Create Account button.

- 35 -

Diagram 2: Test Account – Transaction Successful

In diagram 2, the user is asked to test the bank account by keying in the amount for deposit

and withdrawal. If deposit only, enter “0” for withdrawal. If withdrawal only, enter “0” for

deposit. After clicking the Test Account button, the user sees the message.

Diagram 3: Test Account – No withdrawal

In diagram 3, the user has keyed in the amount for withdrawal larger than the balance

available. The message shows that the withdrawal is not successful.

- 36 -

[Program]

//Program to create Graphical User Interface (GUI) for Bank Account

Simulation

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

class GuiAccTest extends Frame implements ActionListener {

 Label lab=new Label(" ");

 Label lab1=new Label(" ");

 TextField t[]=new TextField [4];

 Label lbl[]=new Label [4];

 Button but=new Button("Create Account");

 Button but1=new Button("Test Account");

 BankAccount b;

 GuiAccTest(){

 addWindowListener(new NewWindowAdapter());

 setLayout(new GridLayout(2,0));

 Panel p=new Panel();

 Panel p1=new Panel();

 but.addActionListener(this);

 but1.addActionListener(this);

 p.setLayout(new GridLayout(5,2));

 p1.add(lab1);

 p1.add(lab);

 lbl[0]=new Label("Account Number");

 lbl[1]=new Label("Initial Balance");

 lbl[2]=new Label("Deposit Amount");

 lbl[3]=new Label("Withdraw Amount");

 for(int i=0;i<4;i++){

 t[i]=new TextField(10);

 p.add(lbl[i]);

 p.add(t[i]);

 }

 p.add(but);

 p.add(but1);

 but1.setVisible(false);

 lbl[2].setVisible(false);

 lbl[3].setVisible(false);

 t[2].setVisible(false);

 t[3].setVisible(false);

 add(p);

 add(p1);

 }

 String testAccount(int d_amt,int w_amt){

 String msg;

- 37 -

 . A . ;
 msg="Transaction Succesful";

 try {

 b.withdraw(w_amt);

 } catch(FundsInsufficientException fe){

 fe= . B . ;
 msg=String.valueOf(fe);

 }

 return msg;

 }

 . C . {
 String str=ae.getActionCommand();

 if(str.equals("Create Account")){

 b=new BankAccount(Integer.parseInt(t[0].getText()),

 Integer.parseInt(t[1].getText()));

 but1.setVisible(true);

 lbl[2].setVisible(true);

 lbl[3].setVisible(true);

 t[2].setVisible(true);

 t[3].setVisible(true);

 but.setVisible(false);

 lbl[0].setVisible(false);

 lbl[1].setVisible(false);

 t[0].setVisible(false);

 t[1].setVisible(false);

 lab1.setText("Account:"+b.accnum+",Current Balance:"+b.amount);

 return;

 }

 else{

 lab.setText(testAccount(Integer.parseInt(t[2].getText()),

 Integer.parseInt(t[3].getText())));

 lab1.setText("Account:"+b.accnum+",Current

Balance:"+b.amount);

 }

 }

 public static void main(String arg[]){

 GuiAccTest at=new GuiAccTest();

 at.setTitle("Bank Account Tester");

 at.setSize(600,200);

 at.setVisible(true);

 }

}

class NewWindowAdapter extends WindowAdapter{

 public void windowClosing(WindowEvent we){

 System.exit(0);

- 38 -

 }

}

class BankAccount{

 int accnum;

 int amount;

 . D . {
 accnum=num;

 amount=amt;

 }

 public void deposit(int amt){

 amount=amount+amt;

 }

 public void withdraw(int amt) throws . E . {
 if(amt>amount)

 throw . F . ;
 else

 amount=amount-amt;

 }

}

class FundsInsufficientException extends . G . {

 int balance;

 int withdraw_amount;

 FundsInsufficientException(int bal,int w_amt){

 balance=bal;

 withdraw_amount=w_amt;

 }

 . H . {
return "Your withdraw amount (" + withdraw_amount

 + ")is larger than the balance (" + balance

 + "). No withdrawal was recorded.";

 }

}

Subquestion

From the answer groups below, select the correct answers to be inserted into the blanks

 . in the above program.

Answer group for A

a) amount += amt

b) amount -= amt

c) b.amount++

d) b.deposit(d_amt)

- 39 -

e) b.withdraw(d_amt)

Answer group for B, E and F

a) FundsInsufficientException

b) FundsInsufficientException()

c) new FundsInsufficientException(amount,amt)

d) new FundsInsufficientException(b.amount,w_amt)

e) new FundsInsufficientException(d_amt,w_amt)

Answer group for C

a) public void actionEvent(ActionEvent ae)

b) public void actionListener()

c) public void actionListener(ActionEvent ae)

d) public void actionPerformed()

e) public void actionPerformed(ActionEvent ae)

Answer group for D

a) BankAccount()

b) BankAccount(int amt)

c) BankAccount(int num)

d) BankAccount(int num, int amt)

e) BankAccount(int num, int amt, int deposit)

Answer group for G

a) ActionEvent

b) ActionListener

c) ActionPerformed

d) BankAccount

e) Exception

Answer group for H

a) public String display(String msg)

b) public String toString()

c) public String toString(String msg)

d) public void display()

e) public void toString()

