

Assembly Language Specifications

1.
COMET II Hardware Specifications
1.1
Hardware Specifications
(1)
One word is 16 bits, and the bit format is as follows:

[image: image1.wmf]Upper 8 bits

Lower 8 bits

15

1

4

13

12

11

10

9

8

7

6

5

4

3

2

1

0

(Bit No.)

Sign (Negative:1, Positive:0)

(2)
Main storage capacity is 65,536 words with address numbers 0 through 65,535.
(3)
Numeric values are expressed as 16-bit binary numbers. Negative numbers are expressed in complements of two.
(4)
Control is sequential. COMET II utilizes a one-word or two-word instruction word.
(5)
The COMET II has four types of registers: GR (16 bits), SP (16 bits), PR (16 bits) and FR (3 bits).
There are eight GR (General Register) registers, GR0 through GR7. These eight registers are used for arithmetic, logical, compare and shift operations. Of these, GR1 through GR7 are also used as index registers to modify addresses.
The stack pointer stores the address currently at the top of the stack.
The PR (Program Register) stores the first address of the next instruction.
The FR (Flag Register) consists of three bits: OF (Overflow Flag), SF (Sign Flag) and ZF (Zero Flag). The following values are set, depending on the result generated by certain operation instructions. These values are referenced by conditional branch instructions.
	OF
	When the result of an arithmetic operation instruction is out of the range of –32,768 to 32,767, the value is 1, and in other cases, the value is 0. When the result of a logical operation instruction is out of the range of 0 to 65,535, the value is 1, and in other cases, the value is 0.

	SF
	When the sign of the operation result is negative (bit number 15 = 1), the value is 1, and in other cases, the value is 0.

	ZF
	When the operation result is 0 (all bits are 0), the value is 1, and in other cases, the value is 0.

(6)
Logical addition or logical subtraction: Treats the data to be added or subtracted as unsigned data, and performs addition or subtraction.

1.2
Instructions
Formats and functions of instructions are described in the following chart. When an instruction code has two types of operands, the upper operand shows the instruction between registers and the lower operand shows the instruction between register and main storage.

	Instruction
	Format
	Description of instructions
	FR

setting

	
	Opcode
	Operand
	
	

(1)
Load, store, load address instruction

	LoaD
	LD
	r1,r2
	r1 ← (r2)
	(*1

	
	
	r,adr [,x]
	r ← (effective address)
	

	STore
	ST
	r,adr [,x]
	Effective address ← (r)
	(

	Load ADdress
	LAD
	r,adr [,x]
	r ← effective address
	

(2)
Arithmetic and logical operation instructions

	ADD Arithmetic
	ADDA
	r1,r2
	r1 ← (r1) + (r2)
	(

	
	
	r,adr [,x]
	r ← (r) + (effective address)
	

	ADD Logical
	ADDL
	r1,r2
	r1 ← (r1) +L (r2)
	

	
	
	r,adr [,x]
	r ← (r) +L (effective address)
	

	SUBtract Arithmetic
	SUBA
	r1,r2
	r1 ← (r1) ((r2)
	

	
	
	r,adr [,x]
	r ← (r) ((effective address)
	

	SUBtract Logical
	SUBL
	r1,r2
	r1 ← (r1) (L (r2)
	

	
	
	r,adr [,x]
	r ← (r) (L (effective address)
	

	AND
	AND
	r1,r2
	r1 ← (r1) AND (r2)
	(*1

	
	
	r,adr [,x]
	r ← (r) AND (effective address)
	

	OR
	OR
	r1,r2
	r1 ← (r1) OR (r2)
	

	
	
	r,adr [,x]
	r ← (r) OR (effective address)
	

	eXclusive OR
	XOR
	r1,r2
	r1 ← (r1) XOR (r2)
	

	
	
	r,adr [,x]
	r ← (r) XOR (effective address)
	

(3)
Compare operation instructions

	ComPare Arithmetic
	CPA
	r1,r2
	Performs an arithmetic compare or logical compare operation on (r1) and (r2) or (r) and (effective address), and sets FR as follows, according to the result of the compare operation.

[image: image2.wmf]FR value

Compare result

SF

ZF

(r1) > (r2)

(r) > (effective address)

0

0

(r1) = (r2)

(r) = (effective address)

0

1

(r1) < (r2)

(r) < (effective address)

1

0

	(*1

	
	
	r,adr [,x]
	
	

	ComPare Logical
	CPL
	r1,r2
	
	

	
	
	r,adr [,x]
	
	

(4)
Shift operation instructions

	Shift Left Arithmetic
	SLA
	r,adr [,x]
	Shifts (r) (excluding the sign bit) left or right by the number of bits specified by the effective address.

When a left shift is performed, those bits that are left vacant by the shift operation are filled with zeroes. When a right shift is performed, those bits that are left vacant by the shift operation are filled with the same value as the sign bit.
	(*2

	Shift Right Arithmetic
	SRA
	r,adr [,x]
	
	

	Shift Left Logical
	SLL
	r,adr [,x]
	Shifts (r) (including the sign bit) left or right by the number of bits specified by the effective address.

Those bits that are left vacant by the shift operation are filled with zeroes.
	

	Shift Right Logical
	SRL
	r,adr [,x]
	
	

(5)
Branch instructions

	Jump on PLus
	JPL
	adr [,x]
	Branches to the effective address, depending on the value of FR. If control does not branch to a new address, execution continues with the next instruction.

[image: image3.wmf]Value of FR in order to

branch

Instruc-

tion

OF

SF

ZF

JPL

0

0

JMI

1

JNZ

0

JZE

1

JOV

1

	(

	Jump on MInus
	JMI
	adr [,x]
	
	

	Jump on Non Zero
	JNZ
	adr [,x]
	
	

	Jump on ZEro
	JZE
	adr [,x]
	
	

	Jump on OVerflow
	JOV
	adr [,x]
	
	

	unconditional JUMP
	JUMP
	adr [,x]
	Branches unconditionally to the effective address.
	

(6)
Stack operation instructions

	PUSH
	PUSH
	adr [,x]
	SP ← (SP) (L 1,
(SP) ← effective address
	(

	POP
	POP
	r
	r ← ((SP)),
SP ← (SP) +L 1
	

(7)
Call and return instructions

	CALL subroutine
	CALL
	adr [,x]
	SP ← (SP) (L 1,
(SP) ← (PR),
PR ← effective address
	(

	RETurn from subroutine
	RET
	
	PR ← ((SP)),
SP ← (SP) +L 1
	

(8)
Other

	SuperVisor Call
	SVC
	adr [,x]
	Determine based on the effective address as the argument. After the execution, GR and FR are undefined.
	(

	No OPeration
	NOP
	
	N/A
	

	(Note)
	r, r1, r2
	All of these represent GR. Values from GR0 to GR7 can be specified.

	
	adr
	This represents the address. A value from 0 to 65,535 can be specified.

	
	x
	This represents GR used as the index register. A value from GR1 to GR7 can be specified.

	
	[]
	Square brackets ([]) indicate that the specification contained in the brackets may be omitted.

	
	()
	The contents of the register or address contained in the parentheses ().

	
	Effective address
	A value produced by adding, through "logical addition," adr and the contents of x, or the address pointed at by that value.

	
	←
	This means that the operation result is stored in the left part register or address.

	
	+L, (L
	Logical addition and logical subtraction.

	
	Effective address for FR setting
	(
:
Setting is performed.

(*1
:
Setting is performed, but 0 is set to OF.

(*2
:
Setting is performed, but the bit value sent from the register is set to OF.

(
:
The value before execution is stored.

	Column
Row
	02
	03
	04
	05
	06
	07

	0
	Space
	0
	@
	P
	`
	p

	1
	!
	1
	A
	Q
	a
	q

	2
	”
	2
	B
	R
	b
	r

	3
	#
	3
	C
	S
	c
	s

	4
	$
	4
	D
	T
	d
	t

	5
	%
	5
	E
	U
	e
	u

	6
	&
	6
	F
	V
	f
	v

	7
	'
	7
	G
	W
	g
	w

	8
	(
	8
	H
	X
	h
	x

	9
)
	9
	I
	Y
	i
	y

	10
	*
	:
	J
	Z
	j
	z

	11
	+
	;
	K
	[
	k
	{

	12
	,
	<
	L
	\
	l
	|

	13
	-
	=
	M
]
	m
	}

	14
	.
	>
	N
	^
	n
	~

	15
	/
	?
	O
	_
	o
	

1.3
Character Set

(1)
A JIS X0201 Romaji/katakana character set that uses 8-bit codes is used.

(2)
Part of the character set is shown in the right table. Eight bits are used to represent one character; the upper four bits indicate the column in the table, and the lower four bits indicate the row. For example, the hexadecimal codes for the space character, "4," "H," and "\" are 20, 34, 48 and 5C, respectively. The characters that correspond to the hexadecimal codes 21 to 7E (and A1 to DF omitted in this table) are called "graphics characters." Graphics characters can be displayed (printed) as characters on an output device.

(3)
If any characters not listed in this table and the bit configuration for those characters are needed, they are given in the problem.
2
Specifications of the CASL II Assembly Language
2.1
Specifications of the language
(1)
CASL II is an assembly language for the COMET II.
(2)
A program consists of instruction lines and comment lines.
(3)
One instruction is described in one instruction line, and cannot continue to the next line.
(4)
Instruction lines and comment lines are written from the first character of the line in the following description formats:
	Line type
	Description format

	Instruction line
	With operand
	[label]{blank}{instruction code}{blank}{operand}[{blank}[comment]]

	
	Without operand
	[label]{blank}{instruction code}[{blank}[{;}[comment]]]

	Comment line
	[blank]{;}[comment]

	(Note)
	[]
	Square brackets ([]) indicate that the specification contained in the brackets may be omitted.

	
	{ }
	Braces ({ }) indicate that the specification contained in the braces is mandatory.

	
	Label
	Label is the name used to refer to the address of (the first word of) the instruction from other instructions and programs. A label must be 1 to 8 characters in length, and the leading character must be an uppercase alphabetic letter. Either uppercase alphabetic letters or numeric characters can be used for the subsequent characters. Reserved words, GR0 through GR7, are not available.

	
	Blank
	One or more space characters.

	
	Instruction code
	The description format is defined by instruction.

	
	Operand
	The description format is defined by instruction.

	
	Comment
	Optional information such as memorandums that can be written in any characters allowed by the processing system.

2.2
Instruction Types
CASL II consists of four assembler instructions (START, END, DS and DC), two macro instructions (IN and OUT) and machine language instructions (COMET II instructions). The specifications are as follows:
	Instruction type
	Label
	Instruction code
	Operand
	Function

	Assembler instruction
	Label
	START
	[Execution start address]
	Defines the top of a program.

Defines the starting address for execution of a program.

Defines the entry name for reference in other programs.

	
	
	END
	
	Defines the end of a program.

	
	[label]
	DS
	Word length
	Allocates an area.

	
	[label]
	DC
	Constant[, constant](((
	Defines a constant.

	Macro instruction
	[label]
	IN
	Input area, input character length area
	Input character data from input devices.

	
	[label]
	OUT
	Output area, output character length area
	Output character data from output devices.

	Machine language instruction
	[label]
	(See "1.2 Instructions")

2.3
Assembler Instructions

Assembler instructions are used for assembler control, etc.
	(1)
	START
	[Execution start address]

The START instruction defines the top of a program.

The label name that is defined within this program specifies the execution start address. If the label is specified, execution begins from the address, and if the label is omitted, execution begins from the next instruction of the START instruction.
The label for this instruction can be referred to from other programs as the entry name.

	(2)
	END
	

The END instruction defines the end of a program.

	(3)
	DS
	Word length

The DS instruction allocates an area of the specified word length.

The word length is specified by a decimal constant ((0). If "0" is specified for the word length of an area, the area is not allocated, but the label is valid.

	(4)
	DC
	Constant[, constant] (((

The DC instruction stores the data that has been specified as a constant in (consecutive) words.

There are four types of constants: decimal constants, hexadecimal constants, character constants and address constants.

	Type of constant
	Format
	Description of instruction

	Decimal constant
	n
	This instruction stores the decimal value specified by "n" as one word of binary data. If "n" is outside of the range of –32,768 to 32,767, only the lower 16 bits of n are stored.

	Hexadecimal constant
	#h
	Assume "h" is a four-digit hexadecimal number. (Hexadecimal notation uses 0 through 9 and A through F.) This instruction stores the hexadecimal value specified by "h" as one word of binary data. (0000 (h (FFFF)

	Character

constant
	'character string'
	This instruction allocates a continuous area for the number of characters (> 0) in the character string. The first character is stored in bits 8 through 15 of the first word, the second character is stored in bits 8 through 15 of the second word, and so on, so that the character data is stored sequentially in memory. Bits 0 through 7 of each word are filled with zeroes.

Spaces and any of the graphics characters can be written in a character string. Apostrophes (') must be written twice consecutively.

	Address constant
	Label
	This instruction stores an address corresponding to the label name as one word of binary data.

2.4
Macro Instructions

Macro instructions use a pre-defined group of instructions and operand data to generate a group of instructions that performs a desired function (the word length is undefined).

	(1)
	IN
	Input area, input character length area

The IN instruction reads one record of character data from a previously assigned input device.

The input area operand should be the label of a 256-word work area, and the input data is input in this area beginning at the starting address, one character per word. No record delimiter code (such as a line return code, when using a keyboard) is stored. The storage format is the same as character constants with the DC instruction. If the input data is less than 256 characters long, the previous data is left as is in the remaining portion of the input area. If the input data exceeds 256 characters, the excess characters are ignored.

The input character length area should be the label of the one-word work area, and the character length that was input ((0) is stored as binary data. If the end-of-file indicator is encountered, -1 is stored.

When the IN instruction is executed, the contents of GR registers are saved but the contents of FR are undefined.

	(2)
	OUT
	Output area, output character length area

The OUT instruction writes character data as one record of data to the previously assigned output device.

The output area operand should be the label of the area where the data to be output is stored, one character per word. The storage format is the same as character constants with the DC instruction. Bits 0 through 7 do not have to be zeroes because the OS ignores them.
The output character length area should be the label of the one-word work area, and the character length that is to be output ((0) is stored as binary data.

When the OUT instruction is executed, the contents of the GR registers are saved but the contents of FR are undefined.
2.5
Machine Language Instructions

Operands of machine language instructions are described in the following formats:

	r, r1, r2
	GR is specified using a symbol from GR0 to GR7.

	x
	GR used as the index register can be specified by a symbol from GR1 to GR7.

	adr
	The address is specified by a decimal constant, a hexadecimal constant, an address constant or a literal.

A literal can be described by attaching the equal sign (=) before a decimal constant, a hexadecimal constant or a character constant. CASL II generates a DC instruction by specifying the constant after the equal sign as the operand, and sets the address to the adr value.

2.6
Other

(1)
The relative positions of the instruction words and areas generated by the assembler conform to the order of the descriptions in the assembly language program. All DC instructions generated from literals are located just before the END instruction.

(2)
The instruction words and areas that are generated occupy a continuous area in the main memory.

3.
Guide to Program Execution

3.1
OS

The following arrangements exist regarding program execution.

(1)
The assembler interprets undefined labels (of those labels written in the operand column, any that are not defined within the program) as entry names (START instruction labels) for other programs. In this case, the assembler refrains from determining the address and entrusts that task to the OS. Before executing the program, the OS performs link processing with entry names for other programs and determines the addresses (program linking).

(2)
The program is started up by the OS. Although the area in the main memory where a program is loaded is undefined, the address value corresponding to the label in the program is corrected to the actual address by the OS.

(3)
During program startup, the OS allocates enough stack area for the program, then adds one to the last address and sets that value in the SP.

(4)
The OS passes control to the program by the CALL instruction. When returning control to the OS after executing the program, the RET instruction is used.

(5)
The assignment of an input device to the IN instruction or of an output device to the OUT instruction is made by the user before executing the program.

(6)
The OS handles the differences that may arise in input and output procedures due to the different I/O devices and media involved; I/O is performed using the system’s standard format and procedures (including error handling). Therefore, the user of these IN and OUT instructions does not need to be concerned with differences among I/O devices.

3.2
Undefined Items

Ensure that any items concerning program execution that are not defined in these specifications are handled by the processing system.

42

 45

_1058771379.doc
00/00/00 0:00

Compare result

FR value

SF

ZF

(r1) > (r2)

0

0

(r) > (effective address)

(r1) = (r2)

0

1

(r) = (effective address)

(r1) < (r2)

1

0

(r) < (effective address)

― 1／1 ―

C:\WINDOWS\TEMP\~WRO1400.doc

_1058790517.doc
00/00/00 0:00

Instruc-tion

Value of FR in order to branch

OF

SF

ZF

JPL

0

0

JMI

1

JNZ

0

JZE

1

JOV

1

― 1／1 ―

C:\WINDOWS\TEMP\~WRO0789.doc

_1058770806.doc
平成13年8月8日水曜日

C:\WINDOWS\TEMP\~WRO0782.doc

Upper 8 bits
Lower 8 bits

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

(Bit No.)

Sign (Negative:1, Positive:0)

- 1/1 -

第 2 版

